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Abstract. The kinetic spherical model with long-ranged interactions and an arbitrary initial order m0

quenched from a very high temperature to T (≤ Tc) is solved. In the short-time regime, the bulk order
increases with a power law in both the critical and phase-ordering dynamics. To the latter dynamics, a
power law for the relative order mr ∼ −t−k is found in the intermediate time-regime. The short-time scaling
relations of small m0 are generalized to an arbitrary m0 and all the time larger than tmic. The characteristic
functions ϕ(b,m0) for the scaling of m0 and ε(b, T ′) for T ′ = T/Tc are obtained. The crossover between
scaling regimes is discussed in detail.

PACS. 64.60.Ht Dynamic critical phenomena – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

In recent years, the universal scaling in non-equilibrium
states have attracted much attention. The phase-ordering
process (POP) [1] and the short-time critical dyanmics
(SCD) [2] are two fruitful examples.

In the critical dynamics, the short-time phenomena are
those which happen at the times just after a microscopic
time-scale tmic needed for a system to forget its micro-
scopic details, and much smaller than the macroscopic
time scale tmac ∼ τ−νz . Since the pioneer work of Janssen
et al. [3], universal short-time scaling has been found in
a variety of different models (for a recent review, see [4]).
The short-time singularity of the response propagator is
governed by a new critical exponent θ. The order increases
in the short-time regime with a power law tθ

′
where θ′ is

another characteristic exponent. It is believed that the
singularity of the temporal correlation is essential to the
short-time scaling. Therefore the scaling can emerge in
the short-time regime of the evolution eventhough all spa-
tial correlations are still short-ranged.

The dynamics to be considered here has no conserva-
tion law, which is sometimes called model A [5]. All critical
exponents as well as the critical point can be fixed in the
short-time regime [6–8]. This is important especially for
Monte-Carlo simulations because at the critical tempera-
ture a system needs infinite time to relax to equilibrium
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due to the critical slowing down. It is good to avoid doing
measurements in equilibrium states. Therefore, it is in-
teresting to investigate the connection between the short-
time regime and the long-time regime and the crossover
of scaling patterns from one regime to another.

The power law increase of order in the SCD is valid
only in the case of a small initial order-parameter m0.
The general case of an arbitrary m0 has been discussed
in [9]. The initial state with non-zero m0 is off-critical.
A characteristic function must be introduced to describe
the moving of m0 in the scale transformation. With the
characteristic function, the scaling law can be extended to
a large m0 and all t � tmic. As far as we know, only the
numerical evidence has been found for this characteristic
function. In this paper, the soluble kinetic spherical model
(KSM) will provide a concrete example.

Instead of a quench to the critical temperature Tc in
the SCD, the system in the POP is quenched to a temper-
ature lower than the critical one. For a system quenched
from a symmetric initial state, the final equilibrium is
never achieved since the ergodicity is broken in the ther-
modynamics. Instead, the length-scale of ordered regions
grows with time as the different broken-symmetry phases
compete to select the equilibrium state. This temporal
singularity should also be the essence of the ordering scal-
ing. It has been found both experimentally and theoret-
ically [10] that the POP at late times can be described
by a single characteristic length-scale L(t) ∼ tρ, reflecting
the self-similarity of domain patterns at different times.

If the initial state breaks the symmetry, as the case
of m0 6= 0 to be discussed here, the equilibrium can
be achieved. A natural question is how long the phase-
ordering scaling will last. The non-zero m0 generates
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a time-scale ti which characterizes the most interesting
short-time regime where we will see new scaling patterns.
Since ti →∞ as m0 → 0, the so-called short-time regime
in fact can persist to a very long time.

The SCD and the POP are governed by two different
fixed points, i.e., Tc and T = 0 respectively, therefore they
have different scaling laws. It will be interesting to see how
the POP crosses over to the SCD as T grows from 0 to Tc.
In the context of POP, besides ti there is another time-
scale tµ given by the non-zero temperature. In this paper,
we will introduce a characteristic function to describe the
temperature dependence of the process. Since the criti-
cal exponents can not change smoothly, there must be a
crossover region that separates the SCD scaling domain
from the scaling domain of POP. We will estimate the do-
main boundary through a self-consistency of the solution.

To obtain explicit analytical results, we confine ourself
to the soluble KSM with or without long-ranged interac-
tions. The KSM is a generalization to the static spher-
ical model [11], to which a model A dynamics is given
by the Langevin equation. The static spherical model
has been proven to be equivalent to the large-n limit
n-vector model (LLNM) in static properties [12]. When
the dynamics is included, they should be still equiva-
lent in the thermodynamic limit since the fluctuation of
〈φ2〉 in the LLNM can be neglected. The LLNM being a
soluble kinetic model with a dimensionality higher than
one has been extensively studied by many authors. The
SCD of the LLNM with the short-ranged interaction and
small m0 is well-known [3,13,14]. To the symmetric POP,
i.e., m0 = 0, many results have been obtained for the
model with either the short-ranged or the long-ranged
interaction [15–18]. The non-symmetric case firstly was
addressed by Bray and Kissner [19] for the short-ranged
interaction. We will use the language of KSM to present
our new results originated from the non-symmetry initial
state, i.e., an arbitrarym0. The KSM has the domain-wall
picture which is helpful for understanding the ordering
process and the crossover from the POP to the SCD.

In this paper, we will concentrate on the consequences
of non-symmetric initial states. The time-dependent order
parameter m(t) as well as the response propagator and
correlation function are calculated. The dynamic behavior
of the symmetric KSM with short-ranged interaction in
the long-time regime was already studied in [20], where
no trace of the initial condition is left. In the case of non-
zero m0, the order-parameter has non-equilibrium values
in the short-time regime after the system is quenched from
a very high temperature. It will show rich scaling patterns
governed by the double time-scales ti and tµ.

It has been known that the critical exponents can be
modified by the interaction range. How the characteristic
critical exponent θ or θ′ depends on the interaction range
has not been explicitly shown. But from the general con-
sideration of that the longer interaction range and higher
dimension are both in favor of the spacial correlation, the
long interaction range will decrease the exponent θ′. We
will show that is just the case in the KSM. Particularly
we show that the interaction-range parameter σ and the

dimensionality d enter the time-dependent order-
parameter m(t) always in the combination d/σ.

The remainder of this paper is organized as follows.
In Section 2 the kinetic spherical model is introduced.
Laplace transformation to m(t) is established in Section 3.
Solutions and scaling behaviors at T = Tc and T < Tc are
obtained in Sections 4 and 5, respectively. In Section 6, a
concrete example of d/σ = 3/2 is given. Our conclusions
and discussions will be given in the last section.

2 The model

The Hamiltonian of the spherical model is

H =
α

2

∑
i

S2
i −

β

2

∑
ij

JijSiSj (1)

with the constraint ∑
i

S2
i = N (2)

where i, j are labels of lattice sites, N is the total number
of spins; β = 1

kBT
. In the dynamic process, α is a

time-dependent Lagrange multiplier corresponding to the
constraint. Jovce [21] first studied the static spherical
model with long-ranged ferromagnetic interactions. In a
d-dimensional lattice,

Jij = J0r
−(d+s)
ij /

∑
j

r
−(d+s)
ij

with 0 < s < 2 for long-ranged interactions, while s > 2
for short-ranged interactions. Where rij is the distance
between the sites i and j.

The Langevin equation for this constrained spin
system is

∂Si
∂t

= −λαSi + λβ
∑
j

JijSj + ηi (3)

where λ is the kinetic coefficient and ηi being a Gaussian
white noise characterized by

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = 2λδijδ(t− t′) (4)

where angle brackets mean average over the noise.
Since the constraint is applied to the whole dynamic

process, at any time t, there is a consistency condition

〈
∑
i

Si
∂Si
∂t
〉 = 0. (5)

The time-dependent order-parameter m(t) = 1
N 〈
∑
i

Si〉 is

in the translationally invariant case equal to 〈Si〉. Taking
the average over the noise in (3), one has

∂m(t)
∂t

= −λτ(t)m(t) (6)

where τ(t) = α(t)− βJ0.
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The fluctuations of spins are defined to be
S̃i = Si −m(t). In the momentum space, one has

S̃(p, t) =
1√
N

∑
i

S̃ieip·ri, η(p, t) =
1√
N

∑
i

ηieip·ri,

with ri the position vector of site i, and

J(p) =
∑
j

Jijeip·rij

with J(0) = J0. Corresponding to (3), the dynamic equa-
tion for S̃(p, t) is

∂S̃(p, t)
∂t

= −λ(τ(t) +∆(p))S̃(p, t) + η(p, t) (7)

where ∆(p) = β(J0 − J(p)). The consistency condition
gives

τ(t) = τsub + βJ0

[
m2(t)− 1

]
+
β

N

∑
p

J(p)〈S̃(−p, t)S̃(p, t)〉

+
1
λN

∑
p

〈S̃(−p, t)η(p, t)〉 (8)

where the first term comes from the mass subtraction
which guarantees τc(∞) = 0 at the critical point. Recall-
ing that the equilibrium correlation has a zero pole at the
critical temperature, one has

〈S̃(−p,∞)S̃(p,∞)〉|βc = 1/∆(p)|βc .

It defines the critical temperature as given latter in (13).
Substituting it into (8) at the critical temperature, one
can find τsub = 1 for the Ito prescription with which the
last term of (8) is zero due to causality. If the Stratonovich
prescription is used, the last term of (8) is 1 and τsub = 0.
Through the paper, Ito prescription will be used.

By solving (7), it is not difficult to obtain the response
propagator

Gp(t, t′) =
1

2λ
〈S̃(−p, t)η(p, t′)〉

= Θ(t − t′)e
−λ∆(p)(t−t′)−λ

tR
t′

dt′′τ(t′′)

(9)

with the Heaviside step function Θ(t − t′) = 1 for t > t′,
otherwise Θ(t − t′) = 0; and the full correlation function
(correlation function including the initial correlation)

C̃p(t, t′) = 〈S̃(p, t)S̃(−p, t′)〉
= 〈S̃(p, 0)S̃(−p, 0)〉Gp(t, 0)G−p(t′, 0) + Cp(t, t′)

(10)

with the correlation function

Cp(t, t′) = 2λ

∞∫
0

dt′′Gp(t, t′′)Gp(t′, t′′) (11)

where 〈S̃(p, 0)S̃(−p, 0)〉 is given by the initial state. Con-
sider a system initially at a temperature T � Tc with a
given initial order-parameterm0. Since initial correlations
are short-ranged, one has 〈S̃(p, 0)S̃(−p, 0)〉 = (1−m2

0).

3 Laplace transformation

Introducing f(t) = m−2(t), from (6) and (8) one obtains
a linear integrodifferential equation for f(t)

∂f(t)
∂t

= 2λβJ0 − 2λ(βJ0 − 1)f(t)

+
2λβ
N

∑
p

J(p)C̃p(t, t)f(t). (12)

For a d-dimensional cubic lattice,

J(p) = J0Cd,s(p)/Cd,s(0)

with Cd,s(p) =
∑
l

|l|−(d+s) cos(l ·p) and l ·p = l1p1 + ...+

ldpd. The critical temperature is given by [21]

βcJ0 =
1
N

∑
p

[1− Cd,s(p)/Cd,s(0)]−1. (13)

Define

w(x) =
1
N

∑
p

1
x+∆(p)/(βJ0)

(14)

then βcJ0 = w(0). By Laplace transformation

F (q) =

∞∫
0

dtf(t)e−qt.

Equation (12) is transformed to

F (q) =
βJ0
q + 1

2λ (m−2
0 − 1)w( q

2λβJ0
)

βJ0 − w( q
2λβJ0

)
· (15)

Using properties of Laplace-transformation, it is easy to
obtain

lim
q→∞

qF (q) = m−2
0 (16)

lim
q→0

qF (q) = m−2(∞) = (1− T/Tc)−1. (17)

Hence the initial condition is satisfied, and the infi-
nite time limit correctly recovers the equilibrium result.
From (17), one can also extract the critical exponent
β = 1/2.

For small p, one has

1− Cd,s(p)/Cd,s(0) = Cpσ (18)

where the constant C depends only on d and s. The
parameter σ denotes an effective potential-range defined
by [22], with σ = s for 0 < s < 2 and σ = 2 for s > 2.

From here after, we suppose d/2 < σ < d. For the
infinite system, the sum in (14) is replaced by an integral.
Combining (13) with (18), in the continuum-limit one has

w(x) = w(0)−Dxd/σ−1 (19)
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where the constant D again depends only on σ and d and
is positive. Then (15) becomes

F (q) =
βJ0
q + βJ0

2λ (m−2
0 − 1)

(β − βc))J0 +D( q
2λβJ0

)d/σ−1
− 1

2λ
(m−2

0 − 1).

(20)

Since the microscopic details have been skipped in the con-
tinuum limit, (20) does not give the correct initial value.
Instead, it gives f(0) = ∞ corresponding to m(0) = 0.
Therefore (20) is only valid for t larger than a microscopic
time-scale tmic. The last term of (20) only has contribu-
tion at t = 0, therefore it can be dropped for the regime
t > tmic.

Notably, if one rescales the kinetic coefficient λ and
the initial order m0 as following

λ′ = λD
1

1−d/σ
c (21)

m′0 =
[
D

1
1−d/σ
c (m−2

0 − 1) + 1
]−1/2

(22)

with Dc = D/(βcJ0)d/σ, then F (q) depends on the di-
mension d and the interaction-range parameter σ through
their ratio k = d/σ, i.e., for t > tmic,

F (q) =
1
q + 1

2λ′ (m
′−2
0 − 1)

µ+ (1− µ)k( q
2λ′ )

k−1
(23)

where µ = (Tc − T )/Tc is the reduced temperature. Dc is
a non-universal constant depending on d, σ and the regu-
larization scheme. As one will see in the next section, (22)

follows from a rescaling of time by a factor D
1

1−k
c .

Equation (23) is the starting point of the following
discussions.

4 T = Tc

At the critical point, µ = 0, the Laplace back-
transformation of (23) is easily carried out. The solution
for the order parameter at the critical point is

m(t) = ±
[

Γ (k)
(2λ′)k−1ti

]1/2

(1 + t/ti)−1/2t1−
k
2 (24)

where ti is a characteristic time-scale of the short-time
regime, which depends on the initial condition,

ti =
(k − 1)(m−2

0 − 1)
2λ

=
(k − 1)(m′−2

0 − 1)
2λ′

· (25)

It is invariant in the combined transformation of (21, 22).
The sign of m(t) can be found from the symmetry of the
initial state. The |m(t)| firstly increases then it relaxes to
zero. The maximum is at t = 2−k

k−1 ti, it is proportional
to ti.

For small enough m0, the ti could be much larger than
tmic. Then in the regime tmic < t� ti one can observe the
power-law order increasing suggested by Janssen et al. [3],

m(t) ∼ tθ′ (26)

with the exponent θ′ = 1− k
2 . This regime is called the crit-

ical initial slip. A standard explanation to the increase of
the order is that the order-parameter follows a mean-field
ordering process because Tc < Tm.f.

c as long as correla-
tions are short-ranged in the critical initial slip. However
the exponent θ′ is non-trivial. As we will see in the next
section, it is different from the corresponding exponent for
the POP.

In the long-time regime, t� ti,

m(t) =
[

Γ (k)
(2λ′)k−1

]1/2

t−
k−1

2 . (27)

The dependence on the initial condition disappears as ex-
pected. Comparing with the well-known nonlinear relax-
ation scaling law, one obtains β

νz = k−1
2 .

When m0 6= 0, the initial state is not at the fixed point.
However, as proposed by Zheng [9], the short-time critical
scaling hypothesis could be generalized to an arbitrary
m0 by introducing a characteristic function of m0 and the
scaling factor b.

As the length is rescaled by a factor b, supposing ti is
rescaled by b−z just like a time, then m(t) given by (24)
satisfies the following scaling relation

m(t,m0) = b−
β
νm(b−zt, ϕ(b,m0)) (28)

where ϕ(b,m0) is the characteristic function, which de-
scribes how the initial order changes in the scale transfor-
mation. Its explicit form can be deduced from the scaling
of ti

ϕ(b,m0) = [b−z(m−2
0 − 1) + 1]−

1
2 . (29)

The effective dimension of the initial order m0 is de-
fined by

x0(b,m0) =
ln[ϕ(b,m0)/m0]

ln b
· (30)

As expected, as m0 → 0, ϕ(b,m0) = bz/2m0, so that the
initial order has an anomalous dimension x0 = z

2 and the
power law (26) is recovered. When m0 takes its maximum
m0 = 1, ϕ = 1 and x0 = 0. In this case, ti = 0, hence
only the nonlinear relaxation scaling law, m(t) ∼ t−

β
νz ,

is observed. Figure 1 plots x0 versus m0 with z = 2 for
b = 2 and b = 4. It is qualitatively consistent with the
numerical results of Ising model [4], for which x0(b,m0) is
a monotonously decreasing function of m0. This appears
to be reasonable by recalling that the spherical model is
just a very rough approximation of the Ising model.

Substituting (24) into (6), one gets τ(t) = k−2
2λt +

1
2λ(t+ti)

. This result together with (9) gives the response
propagator

Gp(t, t′) = Θ(t− t′)
(
t

t′

)(2−k)/2 (
t′ + ti
t+ ti

)1/2

e−eλp
σ(t−t′)

(31)
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Fig. 1. The effective dimension x0(b,m0) versus m0 with z =
2. The upper line is for b = 2 while the lower line for b = 4.

where λ̃ = λCβJ0 with β = βc in this case. The correlation
function (11) is given by

Cp(t, t′) = 2λt′
(
t

t′

) 2−k
2
(
t′ + ti
t+ ti

) 1
2

e−eλp
σ(t−t′)

×
1∫

0

dy(1− y)k−2 t
′ − t′y + ti
t′ + ti

e−2eλpσt′y. (32)

When t� ti and t′ � ti, (31) has a scaling form,

Gp(t, t′) = p−2+η+z

(
t

t′

)θ
h(pz(t− t′))

with h(x) being a scaling function, as suggested in [2]. The
exponents θ = 1 − k

2 , z = σ and η = 2 − σ can be read
out. The values of z and η agree with the correspond-
ing results in [23–25] and [21,26,27]. Two exponents θ
and θ′ are equal to each other. For short-ranged in-
teractions σ = 2, they coincide with the results of
LLNM [3,28,13,14].

When t = t′ � ti, we get the equal-time correlation
function

Cp(t, t) =
2λte−2eλpσt

k − 1
(1 +O(2λ̃pσt)). (33)

It has the scaling form [3,13–15,29] Cp(t, t) =
p−2+ηg(pξc(t)) with g(x) being another scaling function.
Where ξc(t) ∼ t1/σ is a characteristic length-scale. Physi-
cally, it should be related to the correlation length.

When t, t′ � ti and 2λ̃pσt′ large, the propagator and
equal-time correlation function reads as

Gp(t, t′) = Θ(t − t′)
(
t

t′

)− k−1
2

e−eλp
σ(t−t′) (34)

Cp(t, t) =
p−σ

CβcJ0

[
1− k − 1

2λ̃pσt
+O

(
1

(λ̃pσt)2

)]
. (35)

By the use of the characteristic function (29), the response
propagator and correlation function have general scaling
forms which are valid for the times up to tmic and for an
arbitrary m0,

Gp(t, t′,m0) = p−2+η+zh̃(pξc(t), pξc(t′), ϕ(p−1,m0))
(36)

Cp(t, t′,m0) = p−2+ηg̃(pξc(t), pξc(t′), ϕ(p−1,m0))
(37)

where h̃ and g̃ are scaling functions. The significance of the
characteristic function is to connect the short-time regime
and the long-time regime so that for each thermodynamic
quantity only one scaling function is needed for the whole
physical interesting time regime.

5 T < Tc

In the case of T < Tc, the system undergoes an ordering
process which is governed by the fixed point T = 0. For
large β, i.e., µ → 1, one can expand the denominator
of (23) to get

F (q) = µ−1

[
1
q
− 2λ′

µ

(
1− µ
2λ′

)k
qk−2

−m
′−2
0 − 1
µ

(
1− µ
2λ′

)k
qk−1

]
. (38)

The asymptotic solution for the bulk order is obtained by
the Laplace back-transformation

m(t) = m(∞)

[
1−

(
1− ti

t

)(
t

tµ

)1−k
]−1/2

(39)

where tµ = [ 2λ′

|µ|Γ (2−k) (1−µ
2λ′ )k]

1
k−1 . Again for a fixed k, the

dependence on d and σ can be absorbed by a proper rescal-
ing of the time.

The tµ is a temperature-dependent time-scale. The
corresponding length-scale should be the domain-width
ξdw ∼ t1/zµ . The POP scaling only could survive when ξdw

is smaller than the domain-size which grows with time as
ξ ∼ t1/z . That implies tµ should be smaller than a charac-
teristic time of the phase-ordering regime. From the con-
sistency of (39) we do find a constraint for tµ

tµ
ti
<
k

k
k−1

k − 1
·

Replacing tµ by its explicit expression, one has(
1− T

Tc

)(
Tc

T

)k
>

1
kΓ (2− k)

(
k − 1
2λ′kti

)k−1

. (40)

The r.h.s is a positive constant. The l.h.s is a
monotonously decreasing function with respect to T ,
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which has zero value at T = Tc. Hence there is a bound-
ary temperature Tb < Tc. The ordering scaling appears in
the regime 0 < T < Tb. The smaller m0, the larger Tb. It
tends to Tc as m0 → 0.

As t� ti, one has

m(t) = m(∞)

[
1 +

(
t′i
t

)k]− 1
2

(41)

where t′i = tµ(ti/tµ)1/k is a time-scale that characterizes
the short-time ordering behavior. In the symmetry case,
t′i = ∞ so m(t) = 0. No information about the POP can
be extracted from the bulk order-parameter. With a non-
symmetric initial state however, the process has various
scaling behaviors manifested by m(t) due to the compe-
tition of two time-scales. From the self-consistency condi-
tion mentioned above, one can show that in the scaling
regime, ti is at least larger than t′i/2. There will be three
different scaling regimes.

(a) tmic < t� t′i and ti: this is the extensively studied
regime in the symmetric POP. In literatures, sometimes
it is called the late time stage. There is no contradiction
because in the symmetry case ti and t′i are infinite. The
late-time simply means t > tmic.

For small m0, t′i and ti can be much larger than tmic.
Then in this regime, one can observe a power law increase
of the order-parameter

m(t) = m(∞)
(
t

t′i

)θ′T
(42)

with θ′T = k/2. This is the initial increase in the POP.
The response propagator when t� t′i and ti is

Gp(t, t′) = Θ(t− t′)( t
t′

)θT e−eλp
σ(t−t′) (43)

with θT = k/2. We note that expressions similar
to (42, 43) have been appeared in [19,29] at σ = 2.
In [19,29] 2θT is denoted by λ.

(b) t′i � t � ti: the existence of this regime depends
on both the temperature T and the initial order m0. The
self-consistency of (39) implies t′i

ti
< k(k − 1)(1−k)/k. As

T → 0, t′i tends to zero while ti does not change. On the
other hand, as far as k > 1, ti tends to infinite faster than
t′i as m0 → 0. Therefore, this regime exists if m0 is small
but not exactly zero and the temperature is low.

Define a relative order with respect to the equilibrium
order,

mr(t, T ′,m0) =
m(t)−m(∞)

m(∞)

where T ′ = T/Tc. One can easily obtain from (39)

mr(t) = −1
2

(
t′i
t

)k
. (44)

The mr asymptotically follows a power law.

When t′i � t � ti while t′ � t′i, the response propa-
gator is

Gp(t, t′) = Θ(t − t′)
(
t′i
t′

)θT
e−eλp

σ(t−t′). (45)

The time-scale t′i enters the propagator.
Another case is t′i � t′, t� ti. The response propaga-

tor has an asymptotic form

Gp(t, t′) = Θ(t− t′)e−eλpσ(t−t′). (46)

The corresponding equal-time correlation function is

Cp(t, t) =
λ

λ̃pσ
(1− e−2eλpσt). (47)

It exponentially tends to the structure function of the
equilibrium state.

(c) t� ti: notably, in the long-time regime (including
all time if m0 = 1), |m(t)| approaches |m(∞)| from above
if m0 6= 0, and

mr(t) =
1
2

(
tµ
t

)k−1

. (48)

The asymptotic power law has an exponent θ′1 = 1 − k,
which is different from −β/νz = 1−k

2 in the critical non-
linear relaxation. This is in agreement with the results
of [20,30] in the special case of σ = 2. It can be under-
stood since two processes are governed by different fixed
points.

In the general case, 0 < T < Tb and m0 6= 0, the
dimension of the order-parameter is scale-dependent. As
one has seen in the cases (b) and (c), a more suitable
scaling operator is the relative order mr. There exist two
off-critical parameters, T ′ and m0. They will be run-
ning versus the scale in a scale transformation. Therefore
one needs two characteristic functions. The characteristic
function for m0 has been given in (29). The characteristic
function for T ′ can be obtained by requiring tµ scaling as
t, then one can have a general scaling relation,

mr(t, T ′,m0) = mr(b−zt, ε(b, T ′), ϕ(b,m0)). (49)

The characteristic function ε(b, T ′) satisfies the following
equation

εk(b, T ′)
1− ε(b, T ′) = b−z(k−1) T ′k

1− T ′ · (50)

It can be easily checked that ε(b, 0) = 0, ε(b, 1) = 1,
ε(1, T ′) = 1, and ε(∞, T ′) = 0. In fact (49) is valid for all
temperature (if m(∞) is replaced by

√
|µ| when T > Tc)

as one will see from the example of the next section. One
can again define the effective dimension of T ′ as

y(b, T ′) =
ln(ε(b, T ′)/T ′)

ln(T ′)
·



Yuan Chen et al.: Short-time behavior of the kinetic spherical model 103

Fig. 2. The effective dimension y(b, T/Tc) versus T/Tc with
k = 3/2. The upper line is for b = 2 while the lower line for
b = 4.

When T → 0, one has a constant dimension for T ′, i.e.,
y(b, 0) = −z k−1

k . It is negative since T = 0 is an attractive
fixed point. For k = 3/2 and b = 2, 4, y(b, T ′) is plotted
versus T ′ in Figure 2. In the vicinity of the critical tem-
perature, the scaling of the reduced temperature can be
recovered from (50), i.e., µ(b) = 1 − ε(b, Tc) = bz(k−1)µ.
The critical exponent ν = z(k − 1) is obtained.

As in the critical dynamics, with the help of the charac-
teristic functions, the response propagator and correlation
function can be casted into scaling functions

Gp(t, t′, T ′,m0)=h̃′
(
pξ(t), pξ(t′), ε(p−1, T ′), ϕ(p−1,m0)

)
(51)

Cp(t, t′, T ′,m0)=p−σg̃′(pξ(t), pξ(t′), ε(p−1, T ′), ϕ(p−1,m0)).
(52)

Where the characteristic length ξ(t) ∼ tρ with ρ = 1
σ is the

domain size [1]. Apart from some arbitrary coefficients, h̃′
and g̃′ are universal.

6 Example of k = 3/2

In order to see the crossover more clearly, let us consider
the concrete example of k = 3/2. The 3-dimensional model
with the short-ranged interaction belongs to this case. A
compact solution for m(t) is available.

(a) T ≤ Tc: a direct Laplace back-transformation
to (23) gives

m(t) = m(∞)

×
[

1 +
2ti
πtµ

√
tµ
t
− (1 +

2ti
πtµ

)e
t
πtµ erfc(

√
t

πtµ
)

]−1/2

(53)

Fig. 3. The time-dependent order m(t) with k = 3/2 of (39)
and (53). In this figure, ti has been used as the time scale.
The surface has infinite singularity in larger temperatures is
the results of (39) obtained by the low-temperature expansion,
the other is the exact results of (53).

where erfc(x) = 2√
π

∞∫
x

e−τ
2
dτ is the complementary error

function.
Taking the limit µ = 0 (T = Tc), the critical scaling

of (24) for k = 3/2 is recovered. In the other hand, for
small T , µ ∼ 1, one has the ordering scaling for k = 3/2
given in Section 5.

Since no expansions around T = 0 have been made in
obtaining m(t), (53) is valid at temperatures equal and
lower than Tc.

In Figure 3, we compare the results of (39, 53). As
the self-consistency condition (40) implies, m(t) of (39)
graduately deviates from the correct results of (53) as the
temperature increases, and becomes singular when it is
bigger than certain temperature.

(b) T > Tc: for completeness, let us also write down
the exponential relaxation in the high temperature phase.
Since βc > β, (23) has a positive singular point (πtµ)−1,

F (q) =
1

|µ|(πtµ)1/2

1 + 2tiq
q(q1/2 − (πtµ)−1/2)

· (54)

The Laplace back-transformation gives

m(t) =
√
|µ|

×
[

2ti
πtµ

√
tµ
t
− 1 + (1 +

2ti
πtµ

)e
t
πtµ

(
2− erfc(

√
t

πtµ
)

)]− 1
2

.

(55)

In the long-time regime, one has the familiar exponential
decay

m(t) ∼ e−
t

2πtµ .
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7 Conclusion and discussions

In summary, we solve the KSM with long-ranged interac-
tions. The system is quenched from a very high tempera-
ture into either T = Tc or T < Tc, with an arbitrary m0.
The bulk order as well as the response propagator and
correlation function are calculated.

For small m0, we recover the power law of the initial
increase in the SCD. We obtain θ′ = θ = 1 − k

2 . For
the short-ranged interaction, they agree with the existing
results.

The initial order increasing power law is also found in
the POP, but with the exponent θ′T = k/2 different from
that in the critical dynamics. As the symmetry is broken,
a new scaling regime emerges. In the time range t′i < t < ti
the relative order has a power law mr ∼ −t−k, while in
the long-time regime mr ∼ t−(k−1).

We obtain the characteristic function of m0 which en-
ables us to generalize the critical short-time scaling rela-
tion to the whole time range and to an arbitrary m0.

As in the SCD, the whole ordering process with broken
symmetry can be described by universal scaling functions
with the help of two characteristic functions. The one that
arises from the off-critical temperature is given through
the transcendent equation (50). The other one concern-
ing the scaling property of m0 is exactly the same as in
the critical dynamics. This implies that the characteristic
function ϕ does not depend on the dynamics in the model
under consideration. If the non-linear part of a dynamics
is skipped, one will always obtain a monotonously decreas-
ing effective dimension for the initial order. But it should
not be a general conclusion. For the 3-state Potts model,
instead a monotonously decreasing function the effective
dimension x0(m0) firstly increases then goes to zero [9].
Analytical calculations of characteristic functions from the
Ising model or the Potts model remain as a challenge.

Although there is a similarity in the short-time be-
haviors between the SCD and POP, the physical pic-
tures should be quite different for the two processes. In
the critical dynamics, the characteristic length is the cor-
relation length which is divergent as t → ∞. Instead,
it is the domain-size that tends to diverge in the POP.
The domain-width will be controlled by the temperature.
When the temperature approaches Tc from below, the
domain-width grows as t1/zµ . As it gradually become com-
parable with the domain-size, the phase-ordering picture
ceases to be valid. From the consistency condition of the
solution for m(t), we obtain the boundary temperature Tb

for the ordering scaling domain.
In the specific example of k = 3/2, m(t) is obtained

for all temperatures. The ordering scaling can smoothly
cross over to the critical scaling and then to the high-
temperature phase. But at the crossover temperatures,
there is no simple scaling law.

We find that the bulk time-dependent order has the
special feature that it depends on d and the interaction
range-parameter σ only through their ratio. The longer
(shorter) the interaction-range is, the higher (lower) the
effective dimension. It is physically plausible because the

correlation can be strengthened (weakened) by either in-
creasing (decreasing) the interaction-range or dimension.

The LLNM should have the same properties as those
we find in the KSM. Therefore our results about the char-
acteristic functions and the intermediate-time scaling in
the POP can be used as the starting-point of finite-n ex-
pansions.

We have investigated the KSM in the non-classical
regime d/2 < σ < d. In the classical regime 0 < σ < d/2,
the initial increase would be un-observable. When σ ≥ d,
the situation would be more complicated. At σ = d, there
would be a logarithmic correction. We leave these for fur-
ther investigation. Our results can also be extended to a
finite-size lattice [13,14].

Authors thank the very helpful discussions with B. Zheng and
L. Schülke.
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